
El espacio-tiempo es la entidad geométrica en la cual se desarrollan todos los eventos físicos del Universo, de acuerdo con la teoría de la relatividad y otras teorías físicas. El nombre alude a la necesidad de considerar unificadamente la localización geométrica en el tiempo y el espacio, ya que la diferencia entre componentes espaciales y temporales es relativa según el estado de movimiento del observador. De este modo, se habla de continuo espacio-temporal. Debido a que el universo tiene tres dimensiones espaciales físicas observables, es usual referirse al tiempo como la "cuarta dimensión" y al espacio-tiempo como "espacio de cuatro dimensiones" para enfatizar la inevitabilidad de considerar el tiempo como una dimensión geométrica más. La expresión espacio-tiempo ha devenido de uso corriente a partir de la Teoría de la Relatividad especial formulada por Einstein en 1905.
EL ESPACIO TIEMPO CUERVO DE LA RELATIVIDAD GENERAL
Un espacio-tiempo curvo es una variedad lorentziana cuyo tensor de curvatura de Ricci es relacionable es una solución de las ecuaciones de campo de Einstein para un tensor de energía-impulso físicamente razonable. Se conocen centenares de soluciones de ese tipo. Algunos de los ejemplos más conocidos, son los más interesantes físicamente y también son las primeras soluciones obtenidas, representan espacios-tiempo con un alto grado de simetría como:
Espacio tiempo de Schwarszchild, que viene dado por la llamada métrica de Schwarzschild representa la forma del espacio tiempo alrededor de un cuerpo esférico, y puede ser una buena aproximación al campo solar de una estrella que gira muy lentamente alrededor de sí misma.
Modelos de Big-Bang, que vienen dados en general por métricas de tipo Friedman-Lemaître-Robertson-Walker y que describen un universo en expansión, que según su densidad inicial puede llegar a recolapsar
EL ESPACIO TIEMPO CUERVO DE LA RELATIVIDAD GENERAL
Un espacio-tiempo curvo es una variedad lorentziana cuyo tensor de curvatura de Ricci es relacionable es una solución de las ecuaciones de campo de Einstein para un tensor de energía-impulso físicamente razonable. Se conocen centenares de soluciones de ese tipo. Algunos de los ejemplos más conocidos, son los más interesantes físicamente y también son las primeras soluciones obtenidas, representan espacios-tiempo con un alto grado de simetría como:
Espacio tiempo de Schwarszchild, que viene dado por la llamada métrica de Schwarzschild representa la forma del espacio tiempo alrededor de un cuerpo esférico, y puede ser una buena aproximación al campo solar de una estrella que gira muy lentamente alrededor de sí misma.
Modelos de Big-Bang, que vienen dados en general por métricas de tipo Friedman-Lemaître-Robertson-Walker y que describen un universo en expansión, que según su densidad inicial puede llegar a recolapsar
No hay comentarios:
Publicar un comentario